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SUMMARY

A new co-ordinate invariant streamwise upwind formulation for convection dominated �ows is devel-
oped. The eddy di�usivity=viscosity is added directly to the equations in order to remove the oscillations
in the solution. The equations then can be solved by any high-order scheme and the solution retains the
accuracy of the high-order scheme. The accuracy and reduced lateral thickness growth rate are demon-
strated with several numerical examples, including pure convective �ows and lid-driven cavity �ow.
The lateral spreading due to the numerical di�usion is controlled by the anisotropic tensor. Copyright
? 2004 John Wiley & Sons, Ltd.
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1. INTRODUCTION

It is well known that although central di�erence approximations are more accurate than upwind
biased approximations that use the same number of grid points, they are prone to produce
solutions that contain unphysical (and mathematically incorrect) oscillations. Furthermore,
when they are used in conjunction with certain iterative or time advance methods, they are
less stable than upwind methods. The generally accepted criterion for the onset of oscillations
(‘wiggles’) in the solutions is that the cell Reynolds (or Peclet) number should be greater
than two. It should be emphasized that this is a necessary but not a su�cient condition.
A commonly used means of avoiding or, at least reducing, the severity of oscillations in

solutions is to use upwind biased methods. Indeed, one can show [1] that the only method
guaranteed to produce monotone solutions is the �rst-order accurate upwind method. However,
upwind methods produce smooth solutions by introducing signi�cant di�usive errors. They also
tend to be more stable when used with iterative methods; the additional stability can be traced
to the same source.
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When upwind methods are used in two or three dimensions, the di�usive error usually
produces an unphysical increase in the rate of growth of thin layers of rapid lateral variation of
the solution e.g. thin shear layers such as boundary layers or jets or thin layers of material due
to localized sources. In oceanic simulations, this e�ect may lead to broadening and reduction
of strength of coastal currents [2]. In atmospheric work, it may result in broadening of upper
atmosphere jets. Thus, although upwind methods produce smooth results, they modify the
solution substantially, often in ways that degrade the quality signi�cantly.
One means of overcoming this problem is to use a method that introduces di�usion only

in the streamwise (or, as it is often called, streamline) direction. Such a method will produce
unphysical e�ects in regions of strong streamwise variation (such as stagnation points) but
can eliminate the undesirable lateral spreading mentioned above. Methods of this type are not
new and several have been proposed in the past. We now review some of them.
Brooks and Hughes [3] proposed a streamline upwind Petrov–Galerkin (SUPG) method that

achieves the desired e�ect by introducing an upwind biased weighting in a variationally based
�nite element method. This method has been adopted by a number of authors. Kelly et al. [4]
introduced the anisotropic eddy viscosity using an balancing dissipation method. Raithby and
his collaborators introduced a skew upwind method [5]. This method uses �nite di�erence
approximations along local streamline directions. However, to obtain the values needed in the
di�erence approximation, interpolation is required and the di�usive interpolation error gives
solutions that contain the kinds of e�ects that were mentioned above.
More recently, Large et al. [6] proposed an anisotropic eddy viscosity method speci�cally

for the purpose of improving the prediction of equatorial currents in the ocean. Although their
method is quite successful in accomplishing its desired aim (as they demonstrated), it is tied
to the particular co-ordinate system they used and thus does not have the invariance properties
or generality that a good method should possess.
In this paper, we o�er an alternative approach in which a co-ordinate invariant anisotropic

eddy viscosity is added to the equations of motion directly. The equations may then be solved
by any method one desires, including central di�erence methods. The essential di�erence
between the proposed approach and previous SUPG methods is the form of the anisotropy eddy
viscosity, thus the method can be seen as a co-ordinate invariant SUPG method [3, 4]. The
accuracy mainly depends on the based numerical schemes (e.g. central di�erence). Because
it is simpler, we shall discuss the scalar case �rst and then go on to the vector case. After
introducing the method, we shall o�er some examples that illustrate the e�ectiveness of the
approach.

2. AN ANISOTROPIC DIFFUSIVITY FOR A CONSERVED SCALAR

The equation for the conservation of a conserved scalar, �, is well known

@�
@t
+ uj

@�
@xj

=
@
@xj

(
�
@�
@xj

)
(1)

All of the terms have been written in divergence (strong conservation) form to make the
achievement of conservation in a numerical approximation easier. In particular, the term on
the right-hand side is the negative of the divergence of the di�usive �ux, qj= − �@�=@xj.
As noted in the introduction, when this equation is solved with an upwind method in two or
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three dimensions, the solution is smooth but the numerical errors produce greatly increased
lateral spreading of a thin layer of the concentration, �.
In order to avoid the oscillations associated with central di�erence methods and the exces-

sive di�usion of upwind methods, we would like to add to this equation a term that increases
the di�usion in the streamwise direction without modifying the di�usion in the lateral direc-
tions. This is easily done. Such a �ux has the form

qjN = − ANujuk @�@xk (2)

In vector notation, this is

qN = − ANu u · ∇� (3)

In essence, we have added a di�usive term in which the di�usivity is the tensor

�jk =ANujuk = �N
ujuk
q2

(4)

where q2 = umum is the square of the magnitude of the local velocity. The added di�usive �ux
is designed such that, when these equations are transformed into a co-ordinate system in which
one of the axes is aligned with the local velocity vector, only the streamwise component of
the �ux is non-zero i.e. the di�usivity tensor becomes in 2D

�=

(
� 0

0 0

)
(5)

Thus, Equation (1) represents an additional di�usive contribution that is entirely in the stream-
wise direction. Note that the form of the anisotropic di�usivity tensor is very similar to that
proposed in Reference [4]. However, the di�usion sources are totally di�erent and are co-
ordinate invariance.
We emphasize that the di�usive �ux is added strictly for numerical reasons and has no

physical signi�cance. Indeed, it will, in some cases, cause the solution to be less accurate.
To be sure that we do not introduce wiggles into the solution, the constant must be chosen
such that the cell Peclet number obeys the condition

Pec =
q�
|�|¡2 (6)

This condition can easily be satis�ed by choosing AN so that

AN¿
q�
2

(7)

In these inequalities, � should be chosen to be the largest distance within a cell i.e. the length
of the diagonal (�xk�xk)1=2. The best choice for the coe�cient AN is obtained by replacing
the inequality sign by an equality sign. In that way, the minimum amount of di�usion needed
to achieve the desired result is introduced. This is a su�cient, but not necessary condition for
boundedness of central di�erence schemes. If higher-order central di�erence scheme is used
as the based scheme, the requirement for local Peclet number can be relaxed (e.g. Pec¡4).
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When the additional �ux term is added to Equation (1), the resulting equation can be
solved with any standard method. In particular, central di�erence methods should produce
solutions with less lateral spreading and smaller oscillations when this term is added. If the
solution is slowly varying in the streamwise direction, the e�ect of the added term should
be nothing more than the reduction of oscillations and added stability to iterative numerical
solution methods. Note that this approach does not guarantee monotonicity. We emphasize
that no lateral di�usion has been added. Furthermore, the new term is quite easily evaluated.
These claims will be validated in Section 4.

3. THE NAVIER–STOKES EQUATIONS

The same approach can be applied to the Navier–Stokes equations, the only substantial dif-
ference being that the conserved quantity is a vector and its �ux is therefore a second rank
tensor. This means that the added viscosity will need to be a fourth rank tensor.
The Navier–Stokes equations can be written as

@ui
@t
+ uj

@uiuj
@xj

= − 1
�
@p
@xi

+
@
@xj
�ij (8)

where

�ij= − �
(
@ui
@xj

+
@uj
@xi

)
= − 2�Sij (9)

is the viscous momentum �ux tensor and Sij is the rate of strain tensor.
In this case, a streamwise momentum �ux takes the form

�ijN = − BNuiujukul
(
@uk
@xl

+
@ul
@xk

)
= − 2BNuiujukulSkl (10)

When this is transformed into a co-ordinate system in which the local velocity vector is the
1-axis, it is found that only �11N is non-zero. The added viscosity is

�ijkl=BNuiujukul=CN
uiujukul
q4

(11)

The condition that the coe�cient CN must satisfy so as to assure the absence of wiggles is

CN¿
q�
2

(12)

in analogy with Equation (7).
As in the scalar case, the modi�ed equation obtained by adding the streamwise viscous

term to the Navier–Stokes equations can be solved with any numerical method and central
di�erence methods are preferred. As in the scalar case, the coe�cient CN should be chosen
so that the inequality sign is replaced by an equality sign.
Although it appears a bit formidable, the new term is actually quite easily computed. The

term ukulSkl is simply the double scalar product of the rate of strain tensor with the velocity
vector and is needed in all of the terms. It should therefore be computed �rst. In each equation,
this quantity is then multiplied by uiuj and added to the other viscous terms.

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 45:1235–1247



CO-ORDINATE SYSTEM INDEPENDENT STREAMWISE UPWIND METHOD 1239

In the following section, we shall apply the streamwise di�usion terms to the computation
of some standard model problems.

4. NUMERICAL EXAMPLES

4.1. Scalar transport in a constant convective �ow

A typical test for the convection discretization is to consider the problem of transport of
a scalar quantity in a known velocity �eld. We discuss the behaviour of the anisotropic
upwinding method using both steady and unsteady solutions. A step pro�le is convected in a
uniform �ow oblique to grid line. Since only convection is present in this case, the equation
to be solved is

@�
@t
= u

@�
@x
+ v

@�
@y

(13)

In the current test, the velocity is given by u= v= u0(const) which means that the scalar
is transported along a 45◦ diagonal. The domain size is L×W =[0 1]× [0 1]. The scalar �
at west boundary (x=0) is prescribed as a step function

�(y)=

{
0 y¡0:2

1 y¿0:2
(14)

and � at south boundary (y=0) is set to zero.

4.1.1. Steady case. The scalar distribution does not vary with time in a steady case
(@�=@t=0). At the out�ow boundaries, the �rst-order upwind scheme is used in all cases
and the simulation domain is extended further downstream so that the e�ect of out�ow con-
dition is not shown. We show results obtained using the upwind di�erence scheme (UDS),
streamwise upwind di�erence scheme (SUDS) and central di�erence scheme (CDS) below.
In Figure 1, we show pro�les of the scalar � at y=0:5, obtained on uniform 10× 10 and
20× 20 grids. The e�ect of severe numerical di�usion is clearly seen in the UDS solution.
Only a little improvement is found in the solution on the re�ned grid. On the other hand,
SUDS produces a pro�le that is steeper, but it has a mild overshoot. CDS generates severe
oscillations. The numerical di�usion introduced by these schemes can be seen in the contour
plots of the scalar �, see Figures 2 and 3. No numerical di�usion is found in the CDS results
but the introduced oscillations are clearly convected in the streamwise direction.
Note that the streamwise upwind method does not produce zero lateral spreading of the

layer. The reason for this is that the numerical errors introduced when the streamwise di�usion
term is evaluated with second-order central di�erences has the form of a fourth-order di�usion
term. Such a term should be expected to produce a lateral width that is proportional to s1=4

where s is the downstream distance (Figure 4). This compares with the s1=2 behaviour of
second-order di�usion (the dash line in Figure 4). The layer thickness 2� is then proportional
to (s0 + s)1=4, where s0 is the initial layer thickness. In Figure 4, layer width � for UDS
(�) and SUDS (◦) results is expressed in terms of the distance between the �=0:1 and
�=0:9 contours. The solid lines correspond to the �tting function �= c(s0 + s)1=4, where
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Figure 1. Pro�le of scalar � at y=5 (−−: UDS, −·: CDS and −: SUDS), calculated
on a 10× 10 grid (a) and a 20× 20 grid (b). The exact solution is a step function

where the step is located at y=0:3.
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Figure 2. Contour plot of the scalar � for a constant convective �ow on a
10× 10 grid: (a) UDS; (b) CDS; and (c) SUDS.
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Figure 3. Contour plot of the scalar � for a constant convective �ow on a
20× 20 grid: (a) UDS; (b) CDS; and (c) SUDS.
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Figure 4. The layer thickness � for (a) 10× 10 grid and (b) 20× 20 grid, calculated on �=0:9 con-
tour (�: UDS, ◦: SUDS). The solid line denotes the �tting function �= c(s0 + s)1=4 where c=0:14,

s0 = − 0:06 for (a) and c=0:076, s0 = − 0:06 for (b).

c=0:14, s0 = − 0:06 for 10× 10 grid, Figure 4(a), and c=0:07, s0 = − 0:06 for 20× 20
grid, Figure 4(b), respectively. The e�ects of lateral di�usion would be reduced if high-order
central di�erence approximation was used [7].

4.1.2. Unsteady case. In addition to the quantitative comparisons for steady solutions, we also
demonstrate the behaviour of the SUDS in a transient test case. The numerical setup is the
same as that in the previous steady case but we want to look at the initial transient. In the exact
solution, the step at west boundary moves along the 45◦ diagonal. The Euler explicit scheme
(perhaps not the best choice) was used. Figures 5 and 6 show the contours of � calculated
on a 20× 20 grid for UDS, CDS and SUDS at time t=0:2L=U0 and t=0:4L=U0, respec-
tively. CDS gives us oscillatory results which have comparable magnitudes (in the order of
O(10−1)). Very mild oscillation is observed (in the order of O(10−3)) in the SUDS case while
the UDS provides smooth and monotonic solution. No signi�cant lateral spreading is observed
in SUDS, consistent with our discussion in the last section. The UDS results generate ex-
cess di�usion initially (t=0:2L=U0, Figure 5(a)) and later the transient contours (t=0:4L=U0,
Figure 6(a)) resemble the steady solution in Figure 3(a). It is evident that UDS produce
excess di�usion in the transient �ows. At the out�ow boundaries, we can observe the e�ects
of �rst-order upwind scheme in all cases. In general, the transient behaviour of the SUDS
is much closer to that of the based scheme (second-order central di�erence in our case) we
choose. The role of anisotropic di�usion is mainly to stabilize the numerical procedure at
each time step instead of producing monotonic solution using standard upwind-type methods.
Standard upwinding of the convective term is usually not consistent with centrally weighted
source and transient terms, resulting in excessively di�usive solutions [3, 8]. In SUDS, a great
amount of anisotropic di�usion also implies that increased resolution may be required in some
regions.
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Figure 5. Contour plot of the scalar � for a constant convective �ow on a 20× 20 grid at
t=0:2L=U0: (a) UDS; (b) CDS; and (c) SUDS.
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Figure 6. Contour plot of the scalar � for a constant convective �ow on a 20× 20 grid at
t=0:4L=U0: (a) UDS; (b) CDS; and (c) SUDS.

4.2. Scalar transport in a stagnation �ow

The second example involves the transport of scalar quantity in a more complex velocity �eld,
one with curved streamlines. The boundary condition for scalar � is still the step pro�le on
the in�ow boundary x=0 but the step is located at y=0:5. The velocity �eld is given by
u=1 − x and v=y, which represents the �ow near a stagnation point (the exact solution is
provided in Figure 7(a)). The streamlines are the lines (1 − x)y=const, and change direc-
tion with respect to the Cartesian grid. The contours of � calculated on 20× 20 and 40× 40
uniform grids for UDS, CDS and SUDS are presented in Figures 7 and 8, respectively.
The contour plots clearly show the e�ects of numerical di�usion and dispersion. In CDS,
strong oscillations over the whole domain result from the step change in � along the in�ow
boundary.
It is clear that the oscillation in CDS propagates mainly in the streamwise direction. Adding

su�cient di�usion in this direction smoothes the results signi�cantly. The spread of contour
lines shows the e�ect of numerical di�usion introduced by the schemes. It is obvious that the
numerical di�usion from UDS is much greater than that from SUDS. No numerical di�usion
is observed in CDS but the severe dispersion error results in large oscillations in a signi�cant
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Figure 7. Contour of � near a stagnation point with a step pro�le at the west boundary on
a 20× 20 grid. Comparison among di�erent schemes: (a) Exact solution; (b) UDS solution;

(c) CDS solution; and (d) SUDS solution.

part of the domain. Both CDS and SUDS results converge toward the exact solution faster
than UDS. When the computational grid is �ne enough, the local Peclet number is reduced
and the introduced di�usion in SUDS converges to zero. Thus SUDS results will converge to
the exact solution.
We also show the pro�le of � at x=0:75 on uniform 10× 10 and 20× 20 grids in Figure 9.

The CDS solution contains very strong oscillations while, as expected, the UDS solution does
not oscillate. However, the latter is much too di�use. SUDS produces a pro�le with much
improved steepness and generates only a very small oscillation. The major issue for SUDS
is the balance between accuracy and stability. The criteria used to generate the di�usivity for
SUDS does not guarantee monotonicity; it merely eliminates 2�x waves.

4.3. Lid-driven cavity �ow

Finally, we selected a classic example to illustrate the streamwise upwind method for in-
compressible �ow. The numerical method described in last section is applied to a laminar
lid-driven cavity �ow at Reynolds number Re=�ULH=�=2000, where lid velocity is UL
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Figure 8. Contour of � near a stagnation point with a step pro�le at the west boundary on
a 40× 40 grid. Comparison among di�erent schemes: (a) Exact solution; (b) UDS solution;

(c) CDS solution; and (d) SUDS solution.

and cavity height is H . This case has been used by many authors and accurate solutions
are available in the literature. More discussion can be found in Reference [9]. Comparisons
of the pro�les of these horizontal (vertical) velocities at the vertical (horizontal) centreline
are shown in Figures 10 and 11, respectively. The grid resolution varies from 10× 10 to
160× 160. UDS is not very accurate and the solution on the �nest grid is still far from the
grid independent solution. Both CDS and SUDS show monotonic convergence and the results
are very similar. They both show second-order accuracy in the convergence error (Figure 12)
while UDS shows only �rst-order accuracy. This is expected since the numerical di�usion
from SUDS is reduced in a second-order manner as the grid is re�ned.
One of the major bene�ts of SUDS is that it removes the oscillation from CDS along the

streamwise direction on the coarse grid. This can be seen by plotting the vertical velocity on
a vertical line at x=0:1 very close to the west wall (Figure 13). CDS generates a moder-
ate oscillation near the upper lid on the coarse grid (grid resolution: 20× 20) while SUDS
removes the oscillation by adding a small amount of di�usion but maintains the accuracy
of CDS.
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Figure 9. Pro�le of � at x=0:75, calculated on a 10× 10 grid (a) and a 20× 20 grid (b).
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Figure 10. Velocity pro�les at the vertical centreline at Re=2000, calculated on various grids ranging
from 10× 10 to 160× 160: (a) UDS; (b) CDS; and (c) SUDS.
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Figure 11. Velocity pro�les at the horizontal centreline at Re=2000, calculated on various grids ranging
from 10× 10 to 160× 160: (a) UDS; (b) CDS; and (c) SUDS.
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Figure 12. Comparison of the convergence error for the velocity in a lid-driven cavity �ow at Re=2000
for di�erent convective schemes. The upper notation ¿ represents slope −1 and −2.

5. SUMMARY AND CONCLUSIONS

This study has purposed a new co-ordinate invariant streamwise upwind formulation. The
damping of high-frequency dispersion error (oscillations) is achieved by adding a co-ordinate
invariant anisotropic eddy di�usivity=viscosity tensor to the equations in accord with the local
cell Peclet number. The method adds anisotropic di�usivity=viscosity only in the streamwise
direction and possesses the desirable features of accuracy and stability. It also eliminates
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Figure 13. Velocity pro�les at the horizontal centreline at Re=2000, calculated on various grids ranging
from 10× 10 to 160× 160: (a) UDS; (b) CDS; and (c) SUDS.

the excessive crosswind di�usion of other upwind-biased dissipative schemes. We used a
constant convective �ow to demonstrate the 1

4 power lateral spreading of the current scheme.
A stagnation �ow and a lid-driven cavity �ow are used to illustrate the accuracy and the
properties of the method. The method is easy to implement and retains the accuracy of the
chosen numerical scheme. The extension to three-dimensions is straightforward.
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